
BABAR BOOKKEEPING – A DISTRIBUTED META-DATA CATALOG OF
THE BABAR EVENT STORE

D. A. Smith, A. Ceseracciu, SLAC, Menlo Park CA, USA
T. Adye, RAL, Chilton, Didcot, Oxon, UK

D. Bukin, Budker Inst. of Nucl. Physics, Novosibirsk, Russia
G. Dubois-Felsman, Caltech, Pasadena, CA, USA

A. Forti, Univ. of Manchester, Manchester, UK
D. Hutchcroft, Univ. of Liverpool, Liverpool, UK

P. Jackson, Univ. of London, Royal Holloway, Egham, Surrey, UK
D. Kovalskyi, Univ. of Maryland, College Park, MD, USA
W. Roethel, Univ. of California at Irvine, Irvine, CA, USA

Abstract
A number of changes were requested in BaBar's

computing model 2 plans over the past year, and one of
those changes was for a new meta-data catalog to go
along with the new event store. The catalog needed to be
flexible to handle all BaBar data, distributed to all BaBar
sites, and fast access in user interaction. In the
development of this catalog ideas about what is
experimental data were discussed, and some new
concepts were introduced as part of the system. Once the
catalog was implemented new method were developed to
support the requirements. The requirements, concepts
and developed methods are discussed in the paper, along
with comments on how the system has worked in
production.
 For any questions or for further information please
contact the principle author (Douglas Smith, e-mail --
douglas@slac.stanford.edu).

BABAR COMPUTING MODEL 2
In the beginning of 2003 BaBar had decided to

implement a new computing model, which required a
number of changes to the computing effort in the
experiment. The biggest change was redesigning the
event store, to be based on root IO and root files and not
on Objectivtiy databases. Prompted by this change in the
event store format was a stated desire for a new meta-data
catalog. The meta-data catalog requirements were: to be
flexible so to provide lists of data for any possible
analysis within the BaBar experiment; to be performant,
so it would not get slower as the amount of data or
analyses increased in the experiment; to be distributed to
the rest of the BaBar collaboration sites, so any user could
access a local copy of the system at their site. These
requirements from the new computing model have been
incorporated in the new BaBar Bookkeeping, a set of
tools and libraries which interact with a relational
database to provide lists of the required BaBar data. The

BaBar bookkeeping supports both Oracle and MySQL as
underlying SQL engines since they were already widely
used in the collaboration for other purposes. This allowed
a smooth introduction of the new bookkeeping and no
particular extra effort for its maintainence. More
information on the Computing Model 2 changes can be
seen in the plenary talk by Peter Elmer [1].

CORE CONCEPTS

Collections
In the computing model the event store is made up of

“collections”. These are simply collections of events.
The collections are independent from event format and
production system. Each collection name is unique, and
this provides the key for the analysis programs to be able
to access the data. The unique name can consist of any
string of characters, as long as it is unique in the event
store. This is the heart of the bookkeeping database: a list
of all the unique collections in the BaBar event store.

Each collection has a list of associated attributes to
allow an appropriate means of selection of collections for
use. Examples of these attributes are: simulated or real
data, run cycle, data quality information (good or bad), all
together there are about twenty of these attributes. These
attributes can be either collection attributes, for example
the number of events contained in the collection or they
can be related to the runs the collection has been created
from, for example run cycle. This is reflected in the way
the attributes are stored in the database according either to
a 1 to 1 relation with the collection names in the same
table, or if there are shared attributes which need more
information, these are stored as a 1 to n relation in a
separate table. Some of the information has been
duplicated in the collection table in a 1 to 1 relation to
produce a better performance of the queries. The larger
disk space usage was considered acceptable compared to
the gain in performance.

Some examples of actual collection names in the event
store are listed in Example 1. The collection names
chosen in BaBar are based on a file path name structure
just for convenience, it is important to note these are
collection names, not file names.

Each event in the BaBar event store is made up of
different components, and these components can be saved
in different root files. Each collection is stored in one or
more root files and saved in a 1 to n relation in the
database. Collections in the event store are organized to
optimize data archiving and data distribution. To achieve
this goal, similar events are merged together into single
collections to create file sizes just under 2 GB, when
possible. For data distribution purposes the information
about the files associated with a collection are stored the
bookkeeping. This constitutes the file catalog part of the
bookkeeping and refers only to Logical Files Names
(LFN), there is no information about the Physical File
Names (PFN).

LFNs are “global” file information of the event store,
and they are independent from any particular BaBar
computing site or server. The details of the file access at
any computing site are not kept in the bookkeeping, they
are resolved by the application data access system.[1,2]

In the bookkeeping the meta-data about the events and
their internal organisation is decoupled from file
location, storage, and access protocol. All an application
needs from the bookkeeping is a list of collection names,
the files associated with those collections are located by
the data access system, which is configured by the local
computing center. This reduces the amount of meta-data
that needs to be stored, and allows computing sites
freedom to serve files in the best way possible for that
site, and to change the location of their files without the
need of updating the meta-data system. For more detailed
information about the event store see [2].

Runs, and relation to collections
The data measured by the detector are organised into

runs. Each run corresponds to a set of events measured
under the same detector conditions in a certain interval of
time. Although for years the run was considered a unit of
data, in the new computing model it has been replaced by
the concept of collection. Runs need to be processed, and

they can be processed multiple times in the experiment.
Further skimming can be performed over data from many
runs. The event store needs to have the freedom of
merging data as required to simplify storage, producing
collections with events from any number of runs. This
makes the relation between runs from the detector and
collections in the event store an n to m relation.

Runs are nevertheless important for analysis because
they are set of unique events. Since only one copy or
version of data from any run is allowed to appear in any
given analysis, this makes a run the basic “non-
overlapping unit” of data management, which needs to be
recorded in the bookkeeping. In any experiment there
will be this non-overlapping unit, and it could depend on
the experiment as to which quantity this is, either event,
run, or some unit of time. But because of processing this
original unit is not a unique value in the event store. The
bookkeeping system has been designed to record the non-
overlapping unit and the association with the collections
in the event store. As an example, the skimmed collection
-- /store/PRskims/R14/14.4.3/AllEvents/AllEvents_1317,
contains processed and skimmed events from 23 different
runs. One of these runs is numbered 49670, which is also
in 126 other collections. These multiple collections come
from processing and the different streams from
skimming. The n to m relation in this example is about
average in the event store, although some skim
collections contain events from hundreds to thousands of
runs.

Datasets and user access
End users don't want all detailed and confusing

information in analysis, they want a well defined list of
data (collections). This well defined list is provided in the
bookkeeping system as a dataset, and in the basic form a
dataset is just a list of collections. Datasets are produced
as lists of collections with similar attributes: i.e. real or
simulated data, run cycle, on- or off-peak, simulation
decay mode and so on. Each dataset in the system has a
unique name, and this provides simple and fast access to
the lists of data. Users for analysis only need to know the
dataset name they want, and most analyses require
between two to six datasets.

Example 1 : Collection names in the BaBar event store:

from event processing : /store/PR/R14/AllEvents/0004/96/14.4.4e/AllEvents_00049689_14.4.4eV01
from simulation production : /store/SP/R14/001237/200407/14.4.3a/SP_001237_016169
from skimming production : /store/PRskims/R14/14.4.3d/AllEvents/13/AllEvents_1317

Example 2: A very simple example of a dataset, which contains a list of only 2 collections. Datasets can contain any
number of collections, in practice they contain lists from one to tens of thousands of collections.

prompt> BbkUser dataset SPudsAllEventsSkimRun4R14 collection
COLLECTION
/store/SPskims/R14/14.4.3d/AllEvents/00/000998/200310/AllEvents_000998_1539
/store/SPskims/R14/14.4.3d/AllEvents/00/000998/200309/AllEvents_000998_1540
2 rows returned

Datasets are not static during production, they have to
evolve. The bookkeeping has to support the ability of
production to keep on publishing new collections as soon
as they are accessible. As data continue to be measured
by the detector, new collections are published into the
bookkeeping by processing and skimming systems.
These new collections need to be continuously added to
the datasets, the list that results from querying the
bookkeeping for a certain dataset can change frequently.

Bookkeeping has to support also the removal of
collections from a dataset and guarantee at the same time
that a user can recover the dataset status exactly as it was
prior the collection removal. The need of removing
collections is associated with quality checks and
reprocessing or re-skimming of collections. These
changes should be freely made by responsible groups at
any given time. Once a collection is recognised as bad, it
should then quickly come out of a production dataset.

But analysis groups need stable lists. They want to
know that the list of collections they used in the analysis
will still be recorded in the bookkeeping for the life of the
experiment. The bookkeeping system was designed to
support both requirements of rapid evolution and stable
lists. All changes to each dataset are recorded in the

database, and when the list of collections is selected, the
complete list of changes is applied to the selection. To
provide stability, a dataset can be selected up to a chosen
'cut off' time, so only the changes up to that time are
applied further changes to the dataset are not.

At times stable lists of collections need to be
announced to the collaboration, in a way that all analysis
know they are using a similar set of data before
publication. These stable announced lists are provided by
tagged datasets. The tag of a dataset is just a name
aliased to a cut off time, so this tag can be used to always
select a stable list from a dataset at any point in the future
of the experiment. This model of tracking all changes
and providing named stable tags is similar to CVS.

The database schema for the bookkeeping which stores
the meta-data are displayed in figure 1.

DEVELOPED TECHNOLOGIES

SQL selection API
The database schema as defined can be setup on any

relational database system. There was a stated
requirement that the database had to be supported on
either Oracle or MySQL, but these systems use slightly

Figure 1 : The database schema for the BaBar bookkeeping database. The database is more than just three tables for
runs, collections, and datasets, but still as simple as possible.

different flavors of the SQL language. Another difficulty
was the requirement that users should be able to query the
database with whatever type of selection without really
wanting to know about neither SQL nor the underlying
database schema. This meant for the developers to
maintain an unsupportable list of specific SQL statements
for each database interaction.

To solve this problem, a database selection API was
developed, which would produce the SQL statements
separately for each database system, based on simplified
selections. Each column in the database tables was given
an alias, and these aliases can be used either as a
condition of the selection, or the column to select in the
generated SQL. The selection API will then produce the
correct joins between tables, tables names, and the
conditions for the selection from the database. This
selection API can be used as a library or as a command
line utility.

The command line utility has been named “BbkUser”,
and has become quite important to the system for its
flexibility. It can provide users with ways of selecting
information from the database without the need of
knowing table names, the SQL language, or even what a
table join is. Users can use the utility to answer detailed
questions about the data from the system, without waiting

for a developer to provide the feature in some other
utility. The developer does not have to guess ahead at all
possible combinations of selections that users might need.
An example of BbkUser use is shown in Example 4.

Meta-data Distribution
BaBar is a large collaboration, with computing

performed at a number of different sites. It was a stated
requirement of the bookkeeping system that the meta-data
should be accessible by any user at their local site. The
local bookkeeping helps a computing site know what
data have been imported locally by the data distribution
system, in terms of datasets and collections so it is more
appropriate to query the local database than the central
database at SLAC. This reduces also the load on the
central database which is vital for production systems.

To provide for these features, the database can be
totally or partially mirrored to any site on demand. The
access to each database is granted over the network to all
the other remote sites. The meta-data can be accessed by
any member of the BaBar collaboration from anywhere.

This creates a series of bookkeeping databases through
the world. To simplify the system, each database is used
as a read only copy of the master database with is hosted
at SLAC. Only the SLAC master database has new

Example 3 : an example of dataset tags. In this case the dataset AllEventsSkim-Run4-OnPeak-R14 was increasing in
size as the BaBar run 4 cycle progressed. Analysis needed to have comparable sets of data to present before the run
cycle was complete, the dataset was periodically tagged through the run. These tags were named: “GreenCircle”,
“BlueSquare”, and “BlackDiamond”, and show how the number of collections in the dataset increased as the run
progressed. The current dataset (as of the preparation of the presentation) contains 80 collections.

AllEventsSkimRun4OnPeakR14GreenCircle 44 collections
AllEventsSkimRun4OnPeakR14BlueSquare 66 collections
AllEventsSkimRun4OnPeakR14BlackDiamond 76 collections
AllEventsSkimRun4OnPeakR14 80 collections

Example 4 : A simple example of the SQL selection API. In this case a user wishes to list run numbers involved in a
collection. This is a usual query of the database, and in the selection API it has been simplified to just selecting the
value “run” based on the condition of a specific “collection”, as shown in the BbkUser utility. The actual SQL
statement is listed after the result in the example, and even though it is a simple enough SQL statement, it requires
detailed knowledge of the database, and an understanding of database joins, which is not something that all users
should need to know before getting simple queries like this one answered.

prompt> BbkUser collection /store/PRskims/R14/14.4.3d/XiMinus_1550 run
RUN
50488
50489
<...more runs...>
50538
48 rows returned

SELECT bbkr14.bbk_runs.run
 FROM bbkr14.bbk_dsentities,
 bbkr14.bbk_runs,
 bbkr14.bbk_dsetorun
 WHERE bbkr14.bbk_dsetorun.dse_id=bbkr14.bbk_dsentities.id
 AND bbkr14.bbk_runs.id=bbkr14.bbk_dsetorun.run_id
 AND bbkr14.bbk_dsentities.name = '/store/PRskims/R14/14.4.3d/XiMinus_1550';

inserts and updates, other databases are synced with the
master database.

The requirement to support both Oracle and MySQL
produced a problem with the mirroring, since both of
these systems had utilities for mirroring from master
databases, there was not a utility to mirror between the
two systems, so a database mirror application had to be
created for the bookkeeping. This mirrors on demand
from the central site, and synchronises changes to the
database since the last mirror. Each remote site that
decides to host a bookkeeping database, can decide how
often they need to do the mirror.

The use of a single master in practice has proved not to
be a single point of failure, since it will only affect the
inserts and updates when it needs to go down. The total
down time of the master is small, and new production can
easily just wait for updates to the bookkeeping. This does
not stop or slow down the production, only the updates to
the bookkeeping.

Distributed Connections
Since there will become a number of bookkeeping

databases within the collaboration, there was a problem in
developing the tools such that they would work no matter
which database was in use. The connection information
for each database (i.e. server name, user name, and
passwords) could not be put into the tools themselves,
but a connection API needed to be developed to distribute
the connection information on demand.

This was a database connection key distribution
system. When a database connection was requested by a
utility, the connection keys for that database would be
distributed on demand from a central key repository. The
definitions of the database along with the connection key
would then be passed to the utility.

The system was developed to control access to the use
of any relational database within BaBar. The
authentication of a user was based on having a unix
account at SLAC, and the use of afs and ssh. This was
not a limitation within the collaboration, since each
member of BaBar is required to have a SLAC unix
account. The definitions stored in the key repository can
scale for the to be multiple sites in BaBar, multiple
servers at each site, and multiple user names within each
server, where each can have a different access right.

Using this system users are able to connect to different
databases without needing to know any specific
information about the servers in use or passwords. Also
the tools were developed to work in the same way with
different types of databases at different sites. A user can
use the same tool with a MySQL database a RAL or an
Oracle database a SLAC, and get the same results without
event knowing which database was used.

This effect produced a nice feature so there is not a
single point of failure in access. Fallback servers can be
specified, if the first connection did not work, then the

fallback server can be tried. Since the databases are
mirrors of the master, read access will give the same
results no matter which database is accessed. This
fallback happens without the user's knowledge, missing
servers will not result in loss of meta-data service.

Distribution of BaBar data
Along with the features to distribute the meta-data

databases, the system includes tools to import and export
the data in the event store. These import/export tools are
driven by the information in the bookkeeping database,
and data is distributed in terms of datasets. Users can
decide which dataset and component they wish to import
(i.e. micro or mini). Importing the dataset and component
on demand scales nicely from just a laptop user who
needs only one dataset of as little as a few hundred MB,
to a large site which wants all of the data (currently
161TB).

Current Status
This system was developed over the past year and a

half, and it has provided data access for the last run cycle
of BaBar data. The system was beta tested over last fall
and winter, and it went into full production in Feb. of this
year. The system now contains about 1M runs, 290k
files, 184k collections and 17k datasets, and the total size
of the database is about 4GB. This is small compared to
the total event store of 161TB of data. User feedback so
far has been positive.

Task Management
The requirements for the bookkeeping system also

includes a request for tools and utilities to help user to
keep track of what they process and what files they
produce during their analysis. This resulted in a task
management system. Where tasks could be specified and
then applied to a dataset. This has developed into a large
system, which provides tools for the setup and submission
of jobs; tracking the output of the jobs; checking the
status of jobs and helping in recovery. The system is
driven by a database which will keep track of all jobs
performed, and task defined. See Ref. [3] for more
details.

CONCLUSIONS
BaBar has successfully redesigned its bookkeeping

system as required by the new computing model. The
core bookkeeping has been created to simplify the users
data navigation and selection. It has been designed to
give consistent and easy access to the meta-data
independently of the production origin. It provides a
central point for all the production system to publish the
produced collections and for users to access them at any
given time. The evolution of the data and in particular of
datasets is preserved, allowing users to go back and
repeat the same selections and analysis if needed.

The system is distributed to BaBar sites on demand and
data distribution tools have been developed to transfer
data on demand using the information stored in the
bookkeeping to make a user like selection of what a site
might want to import. This has been proved to work from
a laptop to a Tier-A site. The system will naturally scale
to meet the experiments needs.

REFERENCES
[1] P. Elmer, “BaBar computing – From collisions to
physics results.” proceedings for CHEP04, 2004.

[2] M. Steinke, P. Elmer, et al., “How to build an event
store – The new Kanga Event Store for BaBar.”
proceedings of CHEP04, 2004.

[3] W. Roethel, et al. “The BaBar Analysis Task
Manager.” proceedings of CHEP04, 2004.

